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INTRODUCTION 

In a recent paper [l], Aronson and Peletier studied the global stability of 
concentration profiles in a oneidimensional model of a catalyst particle. They 
considered an infinite slab of homogeneous material with catalytic material 
situated on both of its faces. The slab is immersed in a bath in which the 
concentration of the reactant is kept at a constant value. This led to the study 
of the following mixed initial-boundary value problem 

Ut = %r , for O<x<l, t>O, (1) 
#,(i, t) = (-l)i hf(U(i, t>), for i=O,l, t > 0, (2) 

4x, 0) = $(4, for O<x<l. (3) 

Here x denotes the spatial coordinate perpendicular to the faces of the slab, 
these being situated at x = 0 and x = 1. The variable t denotes time, u 
denotes a dimensionless concentration and X denotes a positive parameter. 
The function f appearing in the boundary conditions is given by 

f (24) = W/(1 + @)a] + u - 1, 

in which K1 and R, are suitably chosen positive constants. This function is 
related to the rate of consumption of the reactant by the catalytic material 
situated on the faces. 

It was shown in [l] that for each (G E C([O, 11) problem (l)-(3) has a 
unique solution u(x, t; #). It was also shown that, depending on the value 
of h, problem (l), (2) could have 3, 5, 7, or 9 equilibrium solutions. The main 
emphasis in [l] was on a discussion of the question of stability of these 
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equilibrium solutions. Specifically, if g(x) is such an equilibrium solution, 
a’ partial characterization was given of the region of attraction A(@), where 

A(U) dE {# E C([O, 11): U(X, t, 4) + a(x) uniformly on [0, l] as t --f co}. 

In this paper we shall be interested in the following question. Given any 
$J E C([O, l]), must U(X, t; #) converge as t -+ 00 to some equilibrium solution ? 
That is, is it true that 

6 -qu; = qo, ll), 
i=l 

where {g$}, j = 1, 2 ,..., n, is the set of equilibrium solutions ? We shall show 
that this is indeed the case, and that in addition convergence to the relevant 
equilibrium solution holds in Cl([O, 11). 

In [l] the value of h and the form of the functionf played an important role 
in the characterization of the equilibrium solutions and their regions of 
attraction. In the present paper we shall not be interested in a detailed 
description of the equilibrium solutions. It will therefore be possible to 
obtain without extra effort the above result for the more general problem 

ut = %z 7 O<x<l, t>o, (4) 

%(i, t) = (- 1y f&4 t)>, i=o, 1, t > 0, (5) 

u(x, 0) = t&g, O<x<l, (6) 

in which f. and fi are twice continuously differentiable functions defined 
on W, each satisfying the following hypotheses: 

(HI) There exists a positive constant a < co such that 

SfW > 0 for 1 s ( > II. 

As we shall see, this condition ensures that 

(i) problem (4), (5) h as at least one equilibrium solution; 
(ii) U(X, t; #) is uniformly bounded for 0 < x < 1, t >, 0. 

(H2) The equilibrium solutions of problem (4), (5) are isolated in 

cm 11). 
To prove our result we will use the invariance principle discovered for 

ordinary differential equations by LaSalle and extended to general semigroups 
by Hale [9]. The earliest example of the use of similar techniques to study the 
asymptotic behavior of a partial differential equation seems to be the work of 
Zelenyak [ 111. Invariance techniques have now been successfully applied 
to a number of problems involving partial differential equations (see, for 
example, [2, 81). In particular, a result similar to ours for solutions of a one- 
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dimensional semilinear parabolic equation with zero Dirichlet data at the 
lateral boundary has been established by Rudenko [lo], who used a result 
due to ‘Zelenyak [12], and by Chafee and Infante [5]. Recently the same 
problem with zero Neumann data was treated by Chafee [4] who has also 
studied in [3] a related problem on an infinite interval. 

The major burden of our work is to show that the solution U(X, t; #J) has 
sufficient regularity properties for the invariance principle to be applied. In 
particular, we show that if 4 E C([O, I]) then u~(., . ; #) E C([O, I] x [a, 61) for 
0 < a < b < co. This is done in Section I by considering the equivalent 
system of Volterra integral equations and by use of the maximum principle 
for the heat equation. Then in Section II we fairly rapidly prove the main 
result. 

I 

We first introduce some notation. We shall write 

QT={(x,t):O<x<l,O<t<T}, 

s,={(X,t):XE{O,l},O<t~T}, 

where T > 0 may be infinite. Let Q = Qm , S = S, . Denote by QT the 
closure of QT . 

A function u = u(x, t; 4) is said to be a solution of problem (4)-(6) if 
u E C(Q), U, E C(Q u S), u,, E C(Q), ut E C(Q), and (4)-(6) hold. For problem 
(l)-(3), which can be reduced to a special case of (4)-(6), existence and 
uniqueness was established in [l]. However, examination of the proof reveals 
that the only properties of the function f in (2) which were needed were that 
f rz P(rW) and a property which ensured that 11(x, t; 9) is uniformly bounded 
inQ. In problem (4)-(6) it is hypothesis (Hl) which takes care of the bounded- 
ness of u. To prove this we use a slight variation of a maximum principle 
established in [I]. 

LEMMA 1. Let vi(x) = pi + (qj - p&x for j = 1,2. Assume that 

41 b Pl + f&P,), Pl 2 41 + fkzd, 
and 

!72 G P2 + fo(P21, P2 d !I2 + fi@J- 
If I/ satisjes 

Vl < * G v2 on P, 11, 
then 

v,(x) < u(x, t; (G) G v2@> 

For the proof we refer to [I]. 

in Q. 
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Given any 4 E C([O, 11) th ere exists a constant u* satisfying 

(i) u*>m=h, 1, a } where ai is the constant defined in hypothesis 
(HI) for the functionfi (z’ = 0, l), and 

(ii) u* 3 1 #(x)1 for all x E [0, I]. 

By Lemma 1 and hypothesis (Hl), 

-u* < u(x, t; #) < u* in Q for all t 3 0. (7) 

By (7) the asymptotic behavior of U(X, t; #) is unaffected by the values of fi 
outside [-u*, u*]. 

Thus, since fi.E P(R), without loss of generality we may and shall assume 
that there are constants Mj (j = 0, 1, 2) such that for i = 0 and 1, 

l.fJs)l G M, , l&‘WI < M, 3 If :(4l G M, for all s E R, 

where primes denote differentiation. 
One can now proceed as in [l] to prove the following result. 

THEOREM 1. Let $ E C([O, 11). Then probZem (4)--(6) possesses a unique 
solution. Moreover, for each T > 0 there exists a constants C, such that 

Let u(x, t; 4) be the solution of problem (4)-(6). By means of the following 
lemma we can reduce our problem to one only involving the two functions 
~(0, t) and u( 1, t). (For convenience we shall sometimes omit reference to 9.) 

LEMMA 2. Let ~(0, t) and ~(1, t) belong to Cl(O, m). Then ut E C([O, I] x 

[a, b]) for 0 < a < b < 00. 

Proof. Let G(x, .$, t) be the Green function for the heat equation on 
(0, 1) x (0, 00) with zero Neumann data. It can be given explicitly by 

G(x, f, t) = 1 + 2 2 e-n*nzt cos nm cos no&. 
?Z=l 

Then the solution u of problem (4)--(6) can be written as 

u(X> t> = Iot G(x, 6, t) $(5) d5 - tie Jot G(x, i, t - 7) fi(U(i, 7)) dT. (8) 
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To begin with, we assume that ~(i, t) E Cl([O, co)) for i = 0, 1. We 
substitute T = t - s in (8) and differentiate with respect to t. This yields 

%(x, 4 = j’ G,(x, 5, t) #(5) A!. - i G(x, i, t)fi(u(i, 0)) 
0 i=O 

- go jot G(x, i, s)fi’(u(i, 2 - s)) u’(i, t - s) ds. 

If 0 < a < b < co we can use the expression for G to write the first term as a 
uniformly convergent series of functions in C([O, l] x [a, b]). Hence this 
term belongs to C([O, l] x [a, b]). 

The second term clearly belongs to C([O, l] x [a, b]). To treat the third 
term, note that bothf,‘(u(i, t - s)) and u’(i, t - s) are bounded for 0 < s < t. 

Moreover, for X, 5 E [0, 11, 

s 
t / G(x, LJ, t)[ ds < t + 2 f [(I - e-nzmet)/n2n2]S 

0 n-1 

Hence this term can also be expressed as a uniformly convergent series of 
functions belonging to C([O, I] x [a, b]) and therefore belongs itself to 
C(P, 11 x [a, bl). 

Thus we have shown that ut E C([O, I] x [a, b]) if u’(i, t) is continuous up 
to t = 0 for i = 0 and 1. It remains to dispose of this last condition. Instead 
of problem (4)-(6) we consider the problem (4), (5) with initial value 

II;@, = u(x, 7; $4 

for some 7 > 0. Since U(X, t; t,&) = U(X, t + T; 3) it follows that u(;, t; 4) E 
P([O, co)). By the first part of the proof u,(., .; 4) E C([O, I] x [a, b]) for 
0 < a < b < 03 and hence u,(., .; #) E C([O, I] x [a, b]) for T < a < b < CO. 
Since we may choose 7 as small as we wish, it follows that u,(., .; 4) E 
C([O, I] x [a, b]) whenever 0 < a < b < 00. 

It follows from (8) that the functions u,(t) = ~(i, t; $) satisfy the pair of 
Volterra integral equations 

u,(t) = jol G(i, 5, t) #(E) dt - j$o jot&& - T).!&(T)) do, i = 0, 1, 

wheregdj(t) = G(i, j, t). To write these equations more compactly, we introduce 
the vector-valued functions u(t) = (u,(t), ul(t)), f(u) = (fo(uo), fi(ul)) and 
4(t) = (40(Q 4&N, where W) = Jt W, I, t) M) & and the matrix 
G(t) = (g&t)). We then obtain 

u(l) = d(t) - jot G(t - T)f(U(T)) dT. (9) 
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Let I be an interval on the real line, and let V(l) be the set of functions 
I -+ Iws which, together with their first k derivatives, are continuous on I. 
In [l] it was shown that (9) has a unique solution U, which for every T > 0 
belongs to V([O, T]). It follows from Lemma 2 that it will be enough to prove 
that in addition u belongs to %P(O, T). It will be helpful to prove the following 
lemma, which is also of critical importance for the analysis in Section II. 

LEMMA 3. Let 1,5 E C([O, 11) and let 6 > 0. There exists a constant k > 0 
such that / uz(x, t; I/)\ < kfor all x E [0, I] and t > 6. 

Proof. We have already shown that U(X, t; 4) is uniformly bounded on Q, 
and thus on S. In view of the boundary conditions (5) this implies that u, is 
bounded on 5. Moreover, since S > 0, u(., 6; 4) E Cl([O, I]). Thus u, is 
bounded on the parabolic boundary of the cylinder [0, l] x [a, co). Since u, 
satisfies the heat equation in Q, it follows by the maximum principle that u, 
is bounded in [0, I] x [a, 00) as required. 

Next we estimate the behavior of C(t) and 4’(t). Because G(x, [, t) is 
singular at t = 0, we may also expect $‘(t) to be singular at t = 0. Let 

J(x, t) = [1/2(7rt)li2] e-ze/qt, XER, t >o, 

denote the source function for the heat equation in one dimension. 
Let # E C([O, 11) and let $ d enote the unique extension of # to Iw which is 

symmetric with respect to x = 0 and x = 1. Then 

jol G(x> 5, t) #(t) dt = jm J(x - I, t) &> K-, x E [O, 11, t > 0. (10) 
-cc 

It follows that 4 E C([O, co)), and that 

I ml G gy I $49, t 2 0, i = 0,l. (11) 

Also, if 9 E Cl([O, l]), 

+i’W = - j-m Jc(i - f, t)&‘(t) d5, -co 

and thus, by a routine computation, 

I di’Wl G M41’21 g,g I $+)I, t > 0, i =o, 1. (12) 

We also need an estimate for the behavior of the functions gu(t) as t -+ Of. 
From (10) we see that 

G(x, 5, t) = f {J(x - 5 - 2n, t) + J(X + 5 - 2~2, t)>. 
73=--m 

505/20/2-6 
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where 

I &&)I G 4t), t > 0, 

w(t) = G(O,O, t) = 2 f j(-2~2, t). 
n=-cc 

An elementary computation now shows that (i) w(t) is continuous and non- 
increasing for t > 0, and (ii) w(t) - (rt)-l12 as t + O+. 

For future reference we introduce three functions hi(t) i = 1, 2, 3 which 
are related to w(t). Let 01 E (3, 1) and 

h,(t) = j’ w(s) ds, for t > 0, 
0 

h,(t) = y;s Sa44 for t > 0, 

h,(t) = 7;~ sa j; w(s - Y) Y-& dr, for t > 0. 

It is clear from properties (i) and (ii) of w that the functions hi are well 
defined. Moreover, hi + 0 for t -+ 0+ and i = 1,2,3. The value of ~11 will 
be fixed throughout our discussion. 

In view of the singular behavior of $’ we shall discuss (9) in a weighted 
space of continuous functions. 

DEFINITION. Let y > 0. We denote by X(y) the space of functions 
5 E V([O, ~1) n %‘l((O, ~1) such that 

It is not difficult to show that (X(y), 11 . \ix) is a Banach space. We shall 
frequently omit reference to y. 

THEOREM 2. Let I/ E C([O, I]). Then u(t) = (u,(t), ul(t)) belongs to 
P(O, T) for every T > 0. 

Proof. By an argument similar to that at the end of the proof of Lemma 2 
it is clear that without loss of generality we may suppose that # E Cl([O, 11). 
Now define the operator A by 

(Au)(t) = s,t G(t - T)f (u(T)) d7. 
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Then (9) can be written as 

u =$-Au. 

We shall first show that the operator 

Ku=+-Au 

is a contraction on a certain closed ball of X(y) for y sufficiently small. The 
existence and uniqueness of a solution of (9) in X(y) then follows from 
the well-known Banach fixed point theorem. We will then show how this 
argument may be repeated to show that u(t) E V(O, T) for any T > 0. 

Since 01 > 4, it follows from (12) that + E X. We now show that because 
01 < 1 the operator A is defined and bounded on X. Let u E X. Then we 
have for i = 0, 1 and t E (0, y) 

and hence 

where 

Moreover, it follows after a straightforward computation that for i = 0, 1: 

(4i’W = i &dt).h(%(O)) + i. it gdt - ~>h’(udT)) %‘(T) dT, 
i=o 

Hence 

1 ta(Az&‘(t)l < 2kf,t=w(t) + k&t” jot w(t - T) T-” dT. 1) t=u’ 11~ 

and therefore 

Thus 
II t=W’ IIYP < ~&A(Y) + 2M,hs(y) II tad IIs . 

II Au /Ix < 4Mo(h, + 4 + 2%h, It u Ilx . (13) 

Suppose that R > 0 and II u - C$ /Ix < R. Then it follows from (13) that 

II Ku - $ Ilx < 4Mo(h + h) + 5QW&(ll~ llx + R). 

Hence, because h,(r) + 0 and 114 I& does not increase as y -+ O+, there 
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exists y,, > 0 such that 11 Ku - + I& < R if y -< y0 . Thus, if y < y,, , K maps 
the closed ball 

&k4 = (5 E X: II i - 4 Ilx < 4 

into itself. 
We next show that K is a contraction for sufficiently small values of y. This 

will be so if A is a contraction for small y. 
Let u, er E Bs(+). Then we obtain, using the mean value theorem and the 

bound for gii : 

I ww) - ew~)l 

when 0 < t < y. Hence 

II Au - Av l/o < 2W+(y) II u - 7~ lb . 

Similarly, we obtain 

II V4’ - WW Ilv < W&h + RJGh, + II 4 llx KM II ZJ - u lie 
+2&Q& I/ t”U’ - t%’ IIg . 

Therefore 

where 
II Au - Av Ilx GW II u - a Ilx s 

-W = m=@JWh4 + 4r)l + 2JW + II + 11x1 MYI, 2~1hW). 

Because hi(y) -+ 0 and [I 4 [IX does not increase as y -+ Of, L(y) -+ 0 as 
y + 0+ and there exists a number yr > 0 such that L(y) < I if y < yr . 
Thus if y < y* = min{y, , yr}, the operator K is a contraction which maps 
Bs(+) into itself. 

We now note that the above argument establishes that y* < 1 may be 
chosen so that, for any I$ in a bounded set of X(l), K maps BR(r/) into itself 
and is a contraction. We also note that if we replace $ in (9) by $ = u(., 7; (b) 
for any 7 > 0, then by Lemma 3 and the estimates (1 l), (12), the correspond- 
ing functions r$ are bounded in X(1) independently of 7 > 0. Hence the 
above argument establishes that u(t) E ‘C(7, T + y*) for any 7 > 0, and the 
desired result follows. 

COROLLARY. Let (GE C([O, 11). Then u,(., .; #) E C ([0, l] X [a, b]) for 
O<a<b<oo. 

Proof. This is immediate from Lemma 2. 
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II 

Let U(X, t; $) be the solution of the problem (4)-(6), 

Ut = xl!, , (x, t) E Q, 
uz(i, t) = (-l>ifi(U(i, t)), i=o, 1, t>o, 
4x, 0) = +9, O<X<l, 

in which the functionsfi satisfy conditions (Hl) and (H2), and I,J E C([O, l])- 
Define the operators T(t): C([O, 11) -+ C([O, 11) by 

T(t)+ = 4’, t; $4, t > 0. 

It follows from Theorem 1 that {T(t)} t > 0 is a semigroup on C([O, 11); 
that is, (i) T(0) = identity, and (ii) T(s) T(t) = T(s + t) for all s, t > 0. 

LEMMA 4. Let # E C([O, 11) and T > 0. Then the set {T(t)@ t 2 T} is 
precompact in C( [0, I]). 

Proof. It was shown in Section I that there is a constant K, such that 

II T(t)+ II,, < & 7 for t > 0, (14) 

where (1 * /I,, denotes the supremum norm in C([O, 11). Moreover, by Lemma 3, 
u,(x, t; I/) is uniformly bounded for x E [O, l] and t > 7. Hence the set 
{T(t)@ t > T} is bounded and equicontinuous, and thus precompact by 
Ascoli’s theorem. 

In the usual way we define the norm of an element [ E Cl([O, 11) by 
11 4 [I1 = 11 5 IID + II 5’ II,, . We need the following continuity properties of the 
semigroup {T(t)} t > 0. 

LEMMA 5. (a) For t > 0, T(t) is a continuous map from C([O, 11) into 

fwx m (b) F OY each a,b E C([O, 11) the map T(e)+: (0, a) + cl([O, 11) is 
continuous. 

Proof. First note that (b) follows immediately from (a) and the known 
continuity of T(m)+: (0, CO) + C([O, 11). 

To prove (a) let I,&, -+ $ in C([O, 11). let t > 0, and set u(t) = T(t)& 
un(t) = T(t)+& . Then by Theorem 1, 

II %W - WI, - 0 as n-+03 

and we need to show that 
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It follows from (8) that 

-gal 4 G x, i, t - ~)U&&l 7)) -f&(6 7))) dr. 

Let $,, and $ be the periodic extensions of, respectively, #,, and # into 88 such 
that r,& and $ are symmetric with respect to x = 0 and x = 1. Then the 
first term in the expression for u,, - U, can be written as 

Hence 

We denote the second term in the expression for u,, - u, by la . It follows 
from the mean value theorem and the estimate for fi’ that for t < T, 

G5( x, i, t - T)I dT. yrx 1 u,(x, t) - u(x, t)l 

An elementary computation shows that the two integrals in (16) are bounded 
for 0 ,( t < T. Hence there exists a constant K such that 

I& I d K II tCln - # II0 P O<t<T. 

This implies, together with the estimate for I1 , that 

II %z(., t) - %(., aI < I(N”2 + KZ II v4c - $0 II0 f O<tdT, 

from which the result follows. 

Define the function E Cl([O, 11) -+ R by 

V(5) = S IO1 (l’(x))’ dx + i F&(i)), 
i=O 

where 

F,(P) = j-opfik) 47, i = 0, 1. 

It is readily shown that Y is continuous. 
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LEMMA 6. Let $ E C([O, 11) and let 0 < 7 < t < 00. Then 

V(T(t)#) - V(T(+) = - J‘” ds jO’ ut2(x, s; #) dx. (17) 
7 

Proof. Let 0 < 6 < +. Following Chafee [4], define V, : cl([O, I]) + R 

bY 

v,(t) = i s,‘-” (5’(x))’ dx + ho) + FM))- 

Since u(., t; #) = T(t)+ satisfies the heat equation, it is smooth in&. Therefore 
for t > 0, 

(d/dt) V,(T(t)#) = u&t I:::-” 

I 

l-8 
- ut2 dx + (d/dt)[F,(u(O, t; #)) + &(u(l, t; #))I. 8 

HenceifO<~<t<a, 

F’,(T(t)#) - V,(T(+) = f: u,u, I:I;-” ds - JTt ds 6-’ ut2 dx 

+ [F&(0, s; 9)) + 4(u(L s; WIZ ’ 

Let 6 -+ 0+ . Then by Lemma 2 and the dominated convergence theorem we 
obtain (17). 

For zj E C([O, 11) define the w-limit set w(+) by w($) = {x E Cl([O, 11): 
there exists (tn}, t, -+ CO as n -+ CO, with T(t,& + x in P([O, l])}. We can 
now prove our main result: 

THEOREM 3. Let zj E C([O, 11). Then, as t + co, T(t)# + e, in Cl([O, I)], 
where w is an equilibrium solution. 

Proof. Without loss of generality we may assume that 9 E Cl([O, 11). By 
Lemma 5 {T(t)}t >, 0 defines by restriction a semigroup of continuous 
operators on Cl([O, I]) such that for every $ E Cl([O, I]) the map T(.)#: 
(0, co) -+ Cl([O, 11) is continuous. 

Since u(x, t; #) is bounded, V(T(t)z,b) is bounded below for t > 0. Also, 
by Lemma 6, V( T(t)+) is nonincreasing for t > 0. Bearing in mind Lemma 4 
it follows from [9] that ~(9) is nonempty, positively invariant (i.e., T(t) w($) C 
w(#) for t > 0) and connected. Furthermore, as t + co, d(T(t)+, M) + 0, 
where d denotes distance in Cl([O, 11) an w d h ere M is the largest positively 
invariant set contained in {x E Cr([O, I]): V(x) = inf,,, V(T(t)$)}. 
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By Lemma 6, M contains only equilibrium solutions. Since these solutions 
are by hypothesis (H2) isolated, and since w(#) is connected, it follows that 
w($) = {w} for some equilibrium solution v, and that T(t)+ -+ v in Cl([O, 11) 
ast-+co. 

Remark. In [9] it was assumed (partly so as to obtain stronger conclusions 
than we require) that the map (t, #) -+ T(t)+ is jointly continuous on (0, co) X 

Cl([O, l]), whereas we have established only separate continuity with respect 
to t and #. This apparent restriction was removed by Dafermos [7]; Chernoff 
and Marsden [6] have shown, however, that for a semigroup defined on a 
metric space joint continuity is implied by separate continuity. For our 
problem joint continuity is easy to prove directly. 
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