Stabilization of Concentration Profiles in Catalyst Particles

J. M. BALL

Department of Mathematics, Heriot-Watt University, Edinburgh, Scotland

AND

L. A PELETIER

Department of Mathematics, Delft University of Technology, Delft, The Netherlands

Received November 26, 1974

INTRODUCTION

In a recent paper [1], Aronson and Peletier studied the global stability of concentration profiles in a one-dimensional model of a catalyst particle. They considered an infinite slab of homogeneous material with catalytic material situated on both of its faces. The slab is immersed in a bath in which the concentration of the reactant is kept at a constant value. This led to the study of the following mixed initial-boundary value problem

$$u_t = u_{xx}$$
, for $0 < x < 1$, $t > 0$, (1)

$$u_t = u_{xx}$$
, for $i = 0, 1, t > 0$, (1)
 $u_x(i, t) = (-1)^i \lambda f(u(i, t))$, for $i = 0, 1, t > 0$, (2)

$$u(x, 0) = \psi(x),$$
 for $0 \leqslant x \leqslant 1.$ (3)

Here x denotes the spatial coordinate perpendicular to the faces of the slab, these being situated at x = 0 and x = 1. The variable t denotes time, u denotes a dimensionless concentration and λ denotes a positive parameter. The function f appearing in the boundary conditions is given by

$$f(u) = [k_1 u/(1 + k_2 u)^2] + u - 1,$$

in which k_1 and k_2 are suitably chosen positive constants. This function is related to the rate of consumption of the reactant by the catalytic material situated on the faces.

It was shown in [1] that for each $\psi \in C([0, 1])$ problem (1)-(3) has a unique solution $u(x, t; \psi)$. It was also shown that, depending on the value of λ , problem (1), (2) could have 3, 5, 7, or 9 equilibrium solutions. The main emphasis in [1] was on a discussion of the question of stability of these

equilibrium solutions. Specifically, if $\bar{u}(x)$ is such an equilibrium solution, a partial characterization was given of the region of attraction $A(\bar{u})$, where

$$A(\bar{u}) \stackrel{\text{def}}{=} \{ \psi \in C([0, 1]) : u(x, t, \psi) \to \bar{u}(x) \text{ uniformly on } [0, 1] \text{ as } t \to \infty \}.$$

In this paper we shall be interested in the following question. Given any $\psi \in C([0, 1])$, must $u(x, t; \psi)$ converge as $t \to \infty$ to some equilibrium solution? That is, is it true that

$$\bigcup_{j=1}^{n} A(\bar{u}_{j}) = C([0, 1]),$$

where $\{\bar{u}_j\}$, j=1,2,...,n, is the set of equilibrium solutions? We shall show that this is indeed the case, and that in addition convergence to the relevant equilibrium solution holds in $C^1([0,1])$.

In [1] the value of λ and the form of the function f played an important role in the characterization of the equilibrium solutions and their regions of attraction. In the present paper we shall not be interested in a detailed description of the equilibrium solutions. It will therefore be possible to obtain without extra effort the above result for the more general problem

$$u_t = u_{xx}, 0 < x < 1, t > 0,$$
 (4)

$$u_x(i, t) = (-1)^i f_i(u(i, t)), \qquad i = 0, 1, \qquad t > 0,$$
 (5)

$$u(x, 0) = \psi(x), \qquad 0 \leqslant x \leqslant 1, \tag{6}$$

in which f_0 and f_1 are twice continuously differentiable functions defined on \mathbb{R} , each satisfying the following hypotheses:

(H1) There exists a positive constant $a < \infty$ such that

$$sf(s) > 0$$
 for $|s| > a$.

As we shall see, this condition ensures that

- (i) problem (4), (5) has at least one equilibrium solution;
- (ii) $u(x, t; \psi)$ is uniformly bounded for $0 \le x \le 1$, $t \ge 0$.
- (H2) The equilibrium solutions of problem (4), (5) are isolated in C([0, 1]).

To prove our result we will use the invariance principle discovered for ordinary differential equations by LaSalle and extended to general semigroups by Hale [9]. The earliest example of the use of similar techniques to study the asymptotic behavior of a partial differential equation seems to be the work of Zelenyak [11]. Invariance techniques have now been successfully applied to a number of problems involving partial differential equations (see, for example, [2, 8]). In particular, a result similar to ours for solutions of a one-

dimensional semilinear parabolic equation with zero Dirichlet data at the lateral boundary has been established by Rudenko [10], who used a result due to Zelenyak [12], and by Chafee and Infante [5]. Recently the same problem with zero Neumann data was treated by Chafee [4] who has also studied in [3] a related problem on an infinite interval.

The major burden of our work is to show that the solution $u(x, t; \psi)$ has sufficient regularity properties for the invariance principle to be applied. In particular, we show that if $\psi \in C([0, 1])$ then $u_t(., .; \psi) \in C([0, 1] \times [a, b])$ for $0 < a < b < \infty$. This is done in Section I by considering the equivalent system of Volterra integral equations and by use of the maximum principle for the heat equation. Then in Section II we fairly rapidly prove the main result.

Ι

We first introduce some notation. We shall write

$$Q_T = \{(x, t) : 0 < x < 1, 0 < t \le T\},\$$

$$S_T = \{(x, t) : x \in \{0, 1\}, 0 < t \le T\},\$$

where T>0 may be infinite. Let $Q=Q_{\infty}$, $S=S_{\infty}$. Denote by \overline{Q}_T the closure of Q_T .

A function $u = u(x, t; \psi)$ is said to be a solution of problem (4)–(6) if $u \in C(\overline{Q})$, $u_x \in C(Q \cup S)$, $u_{xx} \in C(Q)$, $u_t \in C(Q)$, and (4)–(6) hold. For problem (1)–(3), which can be reduced to a special case of (4)–(6), existence and uniqueness was established in [1]. However, examination of the proof reveals that the only properties of the function f in (2) which were needed were that $f \in C^2(\mathbb{R})$ and a property which ensured that $u(x, t; \psi)$ is uniformly bounded in \overline{Q} . In problem (4)–(6) it is hypothesis (H1) which takes care of the boundedness of u. To prove this we use a slight variation of a maximum principle established in [1].

LEMMA 1. Let
$$v_j(x)=p_j+(q_j-p_j)x$$
 for $j=1,2.$ Assume that $q_1\geqslant p_1+f_0(p_1), \qquad p_1\geqslant q_1+f_1(q_1),$ and $q_2\leqslant p_2+f_0(p_2), \qquad p_2\leqslant q_2+f_1(q_2).$ If ψ satisfies $v_1\leqslant \psi\leqslant v_2 \qquad on \quad [0,1],$

then

$$v_1(x) \leqslant u(x, t; \psi) \leqslant v_2(x)$$
 in \overline{Q} .

For the proof we refer to [1].

Given any $\psi \in C([0, 1])$ there exists a constant u^* satisfying

- (i) $u^* \ge \max\{a_0, a_1\}$, where a_i is the constant defined in hypothesis (H1) for the function f_i (i = 0, 1), and
 - (ii) $u^* \ge |\psi(x)|$ for all $x \in [0, 1]$.

By Lemma 1 and hypothesis (H1),

$$-u^* \leqslant u(x, t; \psi) \leqslant u^* \quad \text{in } \overline{Q} \text{ for all } t \geqslant 0.$$
 (7)

By (7) the asymptotic behavior of $u(x, t; \psi)$ is unaffected by the values of f_i outside $[-u^*, u^*]$.

Thus, since $f_i \in C^2(\mathbb{R})$, without loss of generality we may and shall assume that there are constants M_i (j = 0, 1, 2) such that for i = 0 and 1,

$$|f_i(\mathbf{s})|\leqslant M_0\,,\qquad |f_i'(\mathbf{s})|\leqslant M_1\,,\qquad |f_i''(\mathbf{s})|\leqslant M_2\qquad\text{for all}\quad \mathbf{s}\in\mathbb{R},$$

where primes denote differentiation.

One can now proceed as in [1] to prove the following result.

THEOREM 1. Let $\psi \in C([0, 1])$. Then problem (4)–(6) possesses a unique solution. Moreover, for each T > 0 there exists a constants C_T such that

$$\max_{\sigma_T} |u(x, t; \psi_1) - u(x, t; \psi_2)| \leqslant C_T \max_{[0,1]} |\psi_1(x) - \psi_2(x)|$$

for any ψ_1 , $\psi_2 \in C([0, 1])$.

Let $u(x, t; \psi)$ be the solution of problem (4)-(6). By means of the following lemma we can reduce our problem to one only involving the two functions u(0, t) and u(1, t). (For convenience we shall sometimes omit reference to ψ .)

LEMMA 2. Let u(0, t) and u(1, t) belong to $C^1(0, \infty)$. Then $u_t \in C([0, 1] \times [a, b])$ for $0 < a < b < \infty$.

Proof. Let $G(x, \xi, t)$ be the Green function for the heat equation on $(0, 1) \times (0, \infty)$ with zero Neumann data. It can be given explicitly by

$$G(x, \xi, t) = 1 + 2 \sum_{n=1}^{\infty} e^{-n^2 \pi^2 t} \cos n \pi x \cos n \pi \xi.$$

Then the solution u of problem (4)-(6) can be written as

$$u(x,t) = \int_0^t G(x,\xi,t) \, \psi(\xi) \, d\xi - \sum_{i=0}^1 \int_0^t G(x,i,t-\tau) \, f_i(u(i,\tau)) \, d\tau. \quad (8)$$

To begin with, we assume that $u(i, t) \in C^1([0, \infty))$ for i = 0, 1. We substitute $\tau = t - s$ in (8) and differentiate with respect to t. This yields

$$u_t(x,t) = \int_0^1 G_t(x,\xi,t) \, \psi(\xi) \, d\xi - \sum_{i=0}^1 G(x,i,t) \, f_i(u(i,0))$$
$$- \sum_{i=0}^1 \int_0^t G(x,i,s) \, f_i'(u(i,t-s)) \, u'(i,t-s) \, ds.$$

If $0 < a < b < \infty$ we can use the expression for G to write the first term as a uniformly convergent series of functions in $C([0, 1] \times [a, b])$. Hence this term belongs to $C([0, 1] \times [a, b])$.

The second term clearly belongs to $C([0, 1] \times [a, b])$. To treat the third term, note that both $f_i'(u(i, t - s))$ and u'(i, t - s) are bounded for $0 \le s \le t$. Moreover, for $x, \xi \in [0, 1]$,

$$\int_0^t |G(x,\xi,t)| ds \leqslant t + 2 \sum_{n=1}^{\infty} [(1 - e^{-n^2\pi^2t})/n^2\pi^2].$$

Hence this term can also be expressed as a uniformly convergent series of functions belonging to $C([0, 1] \times [a, b])$ and therefore belongs itself to $C([0, 1] \times [a, b])$.

Thus we have shown that $u_t \in C([0, 1] \times [a, b])$ if u'(i, t) is continuous up to t = 0 for i = 0 and 1. It remains to dispose of this last condition. Instead of problem (4)–(6) we consider the problem (4), (5) with initial value

$$\psi(x) = u(x, \tau; \psi)$$

for some $\tau > 0$. Since $u(x, t; \bar{\psi}) = u(x, t + \tau; \psi)$ it follows that $u(i, t; \bar{\psi}) \in C^1([0, \infty))$. By the first part of the proof $u_t(., .; \bar{\psi}) \in C([0, 1] \times [a, b])$ for $0 < a < b < \infty$ and hence $u_t(., .; \psi) \in C([0, 1] \times [a, b])$ for $\tau < a < b < \infty$. Since we may choose τ as small as we wish, it follows that $u_t(., .; \psi) \in C([0, 1] \times [a, b])$ whenever $0 < a < b < \infty$.

It follows from (8) that the functions $u_i(t) = u(i, t; \psi)$ satisfy the pair of Volterra integral equations

$$u_i(t) = \int_0^1 G(i, \xi, t) \, \psi(\xi) \, d\xi - \sum_{i=0}^1 \int_0^t g_{ij}(t-\tau) \, f_i(u_i(\tau)) \, d\tau, \qquad i = 0, 1,$$

where $g_{ij}(t) = G(i, j, t)$. To write these equations more compactly, we introduce the vector-valued functions $u(t) = (u_0(t), u_1(t)), f(u) = (f_0(u_0), f_1(u_1))$ and $\phi(t) = (\phi_0(t), \phi_1(t))$, where $\phi_i(t) = \int_0^1 G(i, \xi, t) \psi(\xi) d\xi$, and the matrix $G(t) = (g_{ij}(t))$. We then obtain

$$u(t) = \phi(t) - \int_0^t G(t-\tau) f(u(\tau)) d\tau. \tag{9}$$

Let I be an interval on the real line, and let $\mathscr{C}^k(I)$ be the set of functions $I \to \mathbb{R}^2$ which, together with their first k derivatives, are continuous on I. In [1] it was shown that (9) has a unique solution u, which for every T > 0 belongs to $\mathscr{C}([0, T])$. It follows from Lemma 2 that it will be enough to prove that in addition u belongs to $\mathscr{C}^1(0, T)$. It will be helpful to prove the following lemma, which is also of critical importance for the analysis in Section II.

LEMMA 3. Let $\psi \in C([0, 1])$ and let $\delta > 0$. There exists a constant k > 0 such that $|u_x(x, t; \psi)| \leq k$ for all $x \in [0, 1]$ and $t \geq \delta$.

Proof. We have already shown that $u(x, t; \psi)$ is uniformly bounded on \overline{Q} , and thus on S. In view of the boundary conditions (5) this implies that u_x is bounded on S. Moreover, since $\delta > 0$, $u(., \delta; \psi) \in C^1([0, 1])$. Thus u_x is bounded on the parabolic boundary of the cylinder $[0, 1] \times [\delta, \infty)$. Since u_x satisfies the heat equation in Q, it follows by the maximum principle that u_x is bounded in $[0, 1] \times [\delta, \infty)$ as required.

Next we estimate the behavior of $\phi(t)$ and $\phi'(t)$. Because $G(x, \xi, t)$ is singular at t = 0, we may also expect $\phi'(t)$ to be singular at t = 0. Let

$$J(x, t) = [1/2(\pi t)^{1/2}] e^{-x^2/4t}, \quad x \in \mathbb{R}, t > 0,$$

denote the source function for the heat equation in one dimension.

Let $\psi \in C([0, 1])$ and let $\widetilde{\psi}$ denote the unique extension of ψ to \mathbb{R} which is symmetric with respect to x = 0 and x = 1. Then

$$\int_0^1 G(x,\xi,t)\,\psi(\xi)\,d\xi = \int_{-\infty}^\infty J(x-\xi,t)\,\tilde{\psi}(\xi)\,d\xi, \quad x\in[0,1],\,t>0.$$
 (10)

It follows that $\phi \in C([0, \infty))$, and that

$$|\phi_i(t)| \leq \max_{[0,1]} |\psi(x)|, \quad t \geq 0, \quad i = 0, 1.$$
 (11)

Also, if $\psi \in C^1([0, 1])$,

$$\phi_{i}'(t) = -\int_{-\infty}^{\infty} J_{\xi}(i-\xi,t) \tilde{\psi}'(\xi) d\xi,$$

and thus, by a routine computation,

$$|\phi_i'(t)| \leq [1/(\pi t)^{1/2}] \max_{[0,1]} |\psi'(x)|, \qquad t > 0, \qquad i = 0, 1.$$
 (12)

We also need an estimate for the behavior of the functions $g_{ij}(t)$ as $t \to 0+$. From (10) we see that

$$G(x, \xi, t) = \sum_{n=-\infty}^{\infty} \{J(x - \xi - 2n, t) + J(x + \xi - 2n, t)\}.$$

Hence

$$|g_{ij}(t)| \leqslant \omega(t), \qquad t > 0,$$

where

$$\omega(t) \equiv G(0,0,t) = 2\sum_{n=-\infty}^{\infty} J(-2n,t).$$

An elementary computation now shows that (i) $\omega(t)$ is continuous and non-increasing for t > 0, and (ii) $\omega(t) \sim (\pi t)^{-1/2}$ as $t \to 0+$.

For future reference we introduce three functions $h_i(t)$ i = 1, 2, 3 which are related to $\omega(t)$. Let $\alpha \in (\frac{1}{2}, 1)$ and

$$h_1(t) = \int_0^t \omega(s) ds,$$
 for $t > 0$,
 $h_2(t) = \sup_{(0,t)} s^{\alpha} \omega(s),$ for $t > 0$,
 $h_3(t) = \sup_{(0,t)} s^{\alpha} \int_0^s \omega(s-r) r^{-\alpha} dr,$ for $t > 0$.

It is clear from properties (i) and (ii) of ω that the functions h_i are well defined. Moreover, $h_i \to 0$ for $t \to 0+$ and i=1,2,3. The value of α will be fixed throughout our discussion.

In view of the singular behavior of ϕ' we shall discuss (9) in a weighted space of continuous functions.

DEFINITION. Let $\gamma > 0$. We denote by $X(\gamma)$ the space of functions $\zeta \in \mathscr{C}([0, \gamma]) \cap \mathscr{C}^1((0, \gamma])$ such that

$$\|\zeta\|_{\mathcal{X}} \equiv \sum_{i=0}^{1} \left\{ \sup_{(0,\gamma)} |\zeta_i(t)| + \sup_{(0,\gamma)} |t^{\alpha} \zeta_i'(t)| \right\} < \infty.$$

It is not difficult to show that $(X(\gamma), \|\cdot\|_X)$ is a Banach space. We shall frequently omit reference to γ .

Theorem 2. Let $\psi \in C([0, 1])$. Then $u(t) = (u_0(t), u_1(t))$ belongs to $\mathscr{C}^1(0, T)$ for every T > 0.

Proof. By an argument similar to that at the end of the proof of Lemma 2 it is clear that without loss of generality we may suppose that $\psi \in C^1([0, 1])$. Now define the operator A by

$$(Au)(t) \equiv \int_0^t G(t-\tau) f(u(\tau)) d\tau.$$

Then (9) can be written as

$$u = \phi - Au$$
.

We shall first show that the operator

$$Ku \equiv \phi - Au$$

is a contraction on a certain closed ball of $X(\gamma)$ for γ sufficiently small. The existence and uniqueness of a solution of (9) in $X(\gamma)$ then follows from the well-known Banach fixed point theorem. We will then show how this argument may be repeated to show that $u(t) \in \mathcal{C}^1(0, T)$ for any T > 0.

Since $\alpha > \frac{1}{2}$, it follows from (12) that $\phi \in X$. We now show that because $\alpha < 1$ the operator A is defined and bounded on X. Let $u \in X$. Then we have for i = 0, 1 and $t \in (0, \gamma)$

$$|(Au)_i(t)| = \Big| \sum_{j=0}^1 \int_0^t g_{ij}(t-\tau) f_j(u_j(\tau)) d\tau \Big| \leqslant 2M_0 h_1(\gamma),$$

and hence

$$||Au||_{\mathscr{C}} \leqslant 4M_0h_1(\gamma),$$

where

$$\|\zeta\|_{\mathscr{C}} = \sum_{i=1}^{1} \sup_{(0,\gamma)} |\zeta_i(t)|.$$

Moreover, it follows after a straightforward computation that for i = 0, 1:

$$(Au)_{i}'(t) = \sum_{j=0}^{1} g_{ij}(t) f_{j}(u_{j}(0)) + \sum_{j=0}^{1} \int_{0}^{t} g_{ij}(t-\tau) f_{j}'(u_{j}(\tau)) u_{j}'(\tau) d\tau.$$

Hence

$$|t^{lpha}(Au)_i{}'(t)|\leqslant 2M_0t^{lpha}\omega(t)+M_1t^{lpha}\int_0^t\omega(t- au)\; au^{-lpha}\,d au.\,\|\,t^{lpha}u'\,\|_{\mathscr C}$$

and therefore

$$\parallel t^{\alpha}(Au)' \parallel_{\mathscr{C}} \leqslant 4M_0h_2(\gamma) + 2M_1h_3(\gamma) \parallel t^{\alpha}u' \parallel_{\mathscr{C}}.$$

Thus

$$||Au||_X \leqslant 4M_0(h_1+h_2)+2M_1h_3||u||_X.$$
 (13)

Suppose that R>0 and $||u-\phi||_{X}\leqslant R$. Then it follows from (13) that

$$||Ku - \phi||_X \leq 4M_0(h_1 + h_2) + 2M_1h_3(||\phi||_Y + R).$$

Hence, because $h_i(\gamma) \to 0$ and $\|\phi\|_X$ does not increase as $\gamma \to 0+$, there

exists $\gamma_0>0$ such that $\|\mathit{Ku}-\phi\|_{\mathit{X}}\leqslant R$ if $\gamma\leqslant\gamma_0$. Thus, if $\gamma\leqslant\gamma_0$, K maps the closed ball

$$\overline{B}_{R}(\phi) = \{\zeta \in X : \|\zeta - \phi\|_{X} \leqslant R\}$$

into itself.

We next show that K is a contraction for sufficiently small values of γ . This will be so if A is a contraction for small γ .

Let $u, v \in \overline{B}_R(\phi)$. Then we obtain, using the mean value theorem and the bound for g_{ij} :

$$|(Au)_{t}(t) - (Av)_{t}(t)| \leq M_{1} \sum_{j=0}^{1} \int_{0}^{t} \omega(t-\tau) |u_{j}(\tau) - v_{j}(\tau)| d\tau$$

 $\leq M_{1}h_{1}(\gamma)||u-v||_{\mathscr{C}}, \quad i=0,1,$

when $0 < t < \gamma$. Hence

$$||Au - Av||_{\mathscr{C}} \leqslant 2M_1h_1(\gamma) ||u - v||_{\mathscr{C}}.$$

Similarly, we obtain

Therefore

$$||Au - Av||_X \leqslant L(\gamma) ||u - v||_X$$
,

where

$$L(\gamma) = \max\{2M_1[h_1(\gamma) + h_2(\gamma)] + 2M_2[R + \|\phi\|_X] h_3(\gamma), 2M_1h_3(\gamma)\}.$$

Because $h_i(\gamma) \to 0$ and $\|\phi\|_X$ does not increase as $\gamma \to 0+$, $L(\gamma) \to 0$ as $\gamma \to 0+$ and there exists a number $\gamma_1 > 0$ such that $L(\gamma) < 1$ if $\gamma \leqslant \gamma_1$. Thus if $\gamma \leqslant \gamma^* = \min\{\gamma_0, \gamma_1\}$, the operator K is a contraction which maps $\overline{B}_R(\phi)$ into itself.

We now note that the above argument establishes that $\gamma^* < 1$ may be chosen so that, for any ϕ in a bounded set of X(1), K maps $\overline{B}_R(\phi)$ into itself and is a contraction. We also note that if we replace ψ in (9) by $\overline{\psi} = u(., \tau; \psi)$ for any $\tau \ge 0$, then by Lemma 3 and the estimates (11), (12), the corresponding functions $\overline{\phi}$ are bounded in X(1) independently of $\tau \ge 0$. Hence the above argument establishes that $u(t) \in \mathscr{C}^1(\tau, \tau + \gamma^*)$ for any $\tau \ge 0$, and the desired result follows.

COROLLARY. Let $\psi \in C([0, 1])$. Then $u_t(\cdot, \cdot; \psi) \in C([0, 1] \times [a, b])$ for $0 < a < b < \infty$.

Proof. This is immediate from Lemma 2.

II

Let $u(x, t; \psi)$ be the solution of the problem (4)–(6),

$$u_t = u_{xx}, (x, t) \in Q,$$

$$u_x(i, t) = (-1)^i f_i(u(i, t)), i = 0, 1, t > 0,$$

$$u(x, 0) = \psi(x), 0 \le x \le 1,$$

in which the functions f_i satisfy conditions (H1) and (H2), and $\psi \in C([0, 1])$. Define the operators T(t): $C([0, 1]) \to C([0, 1])$ by

$$T(t)\psi = u(\cdot, t; \psi), \qquad t \geqslant 0.$$

It follows from Theorem 1 that $\{T(t)\}\ t \ge 0$ is a semigroup on C([0, 1]); that is, (i) T(0) = identity, and (ii) $T(s)\ T(t) = T(s+t)$ for all $s, t \ge 0$.

LEMMA 4. Let $\psi \in C([0, 1])$ and $\tau > 0$. Then the set $\{T(t)\psi : t \ge \tau\}$ is precompact in C([0, 1]).

Proof. It was shown in Section I that there is a constant K_0 such that

$$||T(t)\psi||_0 \leqslant K_0, \quad \text{for} \quad t \geqslant 0, \tag{14}$$

where $\|\cdot\|_0$ denotes the supremum norm in C([0, 1]). Moreover, by Lemma 3, $u_x(x, t; \psi)$ is uniformly bounded for $x \in [0, 1]$ and $t \ge \tau$. Hence the set $\{T(t)\psi\colon t \ge \tau\}$ is bounded and equicontinuous, and thus precompact by Ascoli's theorem.

In the usual way we define the norm of an element $\zeta \in C^1([0, 1])$ by $\|\zeta\|_1 = \|\zeta\|_0 + \|\zeta'\|_0$. We need the following continuity properties of the semigroup $\{T(t)\}\ t \geqslant 0$.

LEMMA 5. (a) For t > 0, T(t) is a continuous map from C([0, 1]) into $C^1([0, 1])$. (b) For each $\psi \in C([0, 1])$ the map $T(\cdot)\psi: (0, \infty) \to C^1([0, 1])$ is continuous.

Proof. First note that (b) follows immediately from (a) and the known continuity of $T(\cdot)\psi$: $(0, \infty) \to C([0, 1])$.

To prove (a) let $\psi_n \to \psi$ in C([0, 1]). let t > 0, and set $u(t) = T(t)\psi$, $u_n(t) = T(t)\psi_n$. Then by Theorem 1,

$$||u_n(t) - u(t)||_0 \to 0$$
 as $n \to \infty$

and we need to show that

$$||u_{nx}(\cdot, t) - u_{x}(\cdot, t)||_{0} \to 0$$
 as $n \to \infty$.

It follows from (8) that

$$u_{nx}(x,t) - u_{x}(x,t) = \int_{0}^{1} G_{x}(x,\xi,t) \{\psi_{n}(\xi) - \psi(\xi)\} d\xi$$
$$- \sum_{i=0}^{1} \int_{0}^{t} G_{x}(x,i,t-\tau) \{f_{i}(u_{n}(i,\tau)) - f_{i}(u(i,\tau))\} d\tau.$$

Let $\tilde{\psi}_n$ and $\tilde{\psi}$ be the periodic extensions of, respectively, ψ_n and ψ into \mathbb{R} such that $\tilde{\psi}_n$ and $\tilde{\psi}$ are symmetric with respect to x=0 and x=1. Then the first term in the expression for $u_{nx}-u_x$ can be written as

$$I_1 = \int_{-\infty}^{\infty} J_x(x-\xi,t) \{ \tilde{\psi}_n(\xi) - \tilde{\psi}(\xi) \} d\xi.$$

Hence

$$|I_1| \leqslant \int_{-\infty}^{\infty} |J_x(x-\xi,t)| \, d\xi. \sup_{\mathbb{R}} |\tilde{\psi}_n(\xi) - \tilde{\psi}(\xi)| = (\pi t)^{-1/2} \|\psi_n - \psi\|_0. \quad (15)$$

We denote the second term in the expression for $u_{nx} - u_x$ by I_2 . It follows from the mean value theorem and the estimate for f_i that for $t \leq T$,

$$|I_{2}| \leqslant M_{1} \sum_{i=0}^{1} \int_{0}^{t} |G_{x}(x, i, t - \tau)| d\tau. \max_{\tilde{\mathcal{O}}_{T}} |u_{n}(x, t) - u(x, t)|$$

$$\leqslant M_{1} \sum_{i=0}^{1} \int_{0}^{t} |G_{x}(x, i, t - \tau)| d\tau. C_{T} ||\psi_{n} - \psi||_{0}. \tag{16}$$

An elementary computation shows that the two integrals in (16) are bounded for $0 \le t \le T$. Hence there exists a constant K such that

$$|I_2| \leqslant K \|\psi_n - \psi\|_0$$
, $0 \leqslant t \leqslant T$.

This implies, together with the estimate for I_1 , that

$$||u_{nx}(\cdot, t) - u_x(\cdot, t)||_0 \le \{(\pi t)^{-1/2} + K\} ||\psi_n - \psi_0||_0, \qquad 0 < t \le T,$$

from which the result follows.

Define the function $V: C^1([0, 1]) \to \mathbb{R}$ by

$$V(\zeta) \equiv \frac{1}{2} \int_0^1 (\zeta'(x))^2 dx + \sum_{i=0}^1 F_i(\zeta(i)),$$

where

$$F_i(p) = \int_0^p f_i(q) dq, \quad i = 0, 1.$$

It is readily shown that V is continuous.

LEMMA 6. Let $\psi \in C([0, 1])$ and let $0 < \tau < t < \infty$. Then

$$V(T(t)\psi) - V(T(\tau)\psi) = -\int_{\tau}^{t} ds \int_{0}^{1} u_{t}^{2}(x, s; \psi) dx.$$
 (17)

Proof. Let $0 < \delta < \frac{1}{2}$. Following Chafee [4], define $V_{\delta}: C^{1}([0, 1]) \to \mathbb{R}$ by

$$V_{\delta}(\zeta) = \frac{1}{2} \int_{\delta}^{1-\delta} (\zeta'(x))^2 dx + F_0(\zeta(0)) + F_1(\zeta(1)).$$

Since $u(\cdot, t; \psi) = T(t)\psi$ satisfies the heat equation, it is smooth in Q. Therefore for t > 0,

$$(d/dt) \ V_{\delta}(T(t)\psi) = u_x u_t \mid_{x=\delta}^{x=1-\delta}$$

$$- \int_{\delta}^{1-\delta} u_t^2 \ dx + (d/dt) [F_0(u(0,t;\psi)) + F_1(u(1,t;\psi))].$$

Hence if $0 < \tau < t < \infty$,

$$V_{\delta}(T(t)\psi) - V_{\delta}(T(\tau)\psi) = \int_{\tau}^{t} u_{x}u_{t} \Big|_{x=\delta}^{x=1-\delta} ds - \int_{\tau}^{t} ds \int_{\delta}^{1-\delta} u_{t}^{2} dx + \left[F_{0}(u(0,s;\psi)) + F_{1}(u(1,s;\psi)) \right]_{s=t}^{\delta-t}.$$

Let $\delta \rightarrow 0+$. Then by Lemma 2 and the dominated convergence theorem we obtain (17).

For $\psi \in C([0, 1])$ define the ω -limit set $\omega(\psi)$ by $\omega(\psi) = \{\chi \in C^1([0, 1]):$ there exists $\{t_n\}$, $t_n \to \infty$ as $n \to \infty$, with $T(t_n)\psi \to \chi$ in $C^1([0, 1])$. We can now prove our main result:

THEOREM 3. Let $\psi \in C([0, 1])$. Then, as $t \to \infty$, $T(t)\psi \to v$ in $C^1([0, 1])$, where v is an equilibrium solution.

Proof. Without loss of generality we may assume that $\psi \in C^1([0, 1])$. By Lemma 5 $\{T(t)\}t \ge 0$ defines by restriction a semigroup of continuous operators on $C^1([0, 1])$ such that for every $\psi \in C^1([0, 1])$ the map $T(.)\psi$: $(0, \infty) \rightarrow C^1([0, 1])$ is continuous.

Since $u(x, t; \psi)$ is bounded, $V(T(t)\psi)$ is bounded below for $t \ge 0$. Also, by Lemma 6, $V(T(t)\psi)$ is nonincreasing for t > 0. Bearing in mind Lemma 4 it follows from [9] that $\omega(\psi)$ is nonempty, positively invariant (i.e., $T(t) \omega(\psi) \subseteq \omega(\psi)$ for $t \ge 0$) and connected. Furthermore, as $t \to \infty$, $d(T(t)\psi, M) \to 0$, where d denotes distance in $C^1([0, 1])$ and where M is the largest positively invariant set contained in $\{\chi \in C^1([0, 1]): V(\chi) = \inf_{t>0} V(T(t)\psi)\}$.

By Lemma 6, M contains only equilibrium solutions. Since these solutions are by hypothesis (H2) isolated, and since $\omega(\psi)$ is connected, it follows that $\omega(\psi) = \{v\}$ for some equilibrium solution v, and that $T(t)\psi \to v$ in $C^1([0, 1])$ as $t \to \infty$.

Remark. In [9] it was assumed (partly so as to obtain stronger conclusions than we require) that the map $(t, \psi) \to T(t)\psi$ is jointly continuous on $(0, \infty) \times C^1([0, 1])$, whereas we have established only separate continuity with respect to t and ψ . This apparent restriction was removed by Dafermos [7]; Chernoff and Marsden [6] have shown, however, that for a semigroup defined on a metric space joint continuity is implied by separate continuity. For our problem joint continuity is easy to prove directly.

ACKNOWLEDGMENT

The work of one of us (J.M.B.) was supported by a United Kingdom Science Research Council fellowship, held at the Department of Mathematics, Heriot-Watt University, and the Lefschetz Center for Dynamical Systems, Brown University.

REFERENCES

- D. G. Aronson and L. A. Peletier, Global stability of symmetric and asymmetric concentration profiles in catalyst particles, Arch. Rational Mech. Anal. 54 (1974), 175-204.
- J. M. Ball, Stability theory for an extensible beam, J. Differential Equations 14 (1973), 399-418.
- 3. N. Chaffe, A stability analysis for a semilinear parabolic partial differential equation, J. Differential Equations, 15 (1974), 522-540.
- N. Chaffe, Asymptotic behaviour for solutions of a one-dimensional parabolic equation with Neumann boundary conditions, J. Differential Equations, 18 (1975), 111-134.
- N. CHAFFE AND E. F. INFANTE, A bifurcation problem for a nonlinear differential equation of parabolic type, Applicable Analysis, 4 (1974), 17-37.
- P. CHERNOFF AND J. MARSDEN, On continuity and smoothness of group actions, Bull. Amer. Math. Soc. 76 (1970), 1044-1049.
- C. M. DAFERMOS, Uniform processes and semicontinuous Liapunov functionals, *J. Differential Equations* 11 (1972), 401-405.
- C. M. DAFERMOS AND M. SLEMROD, Asymptotic behaviour of nonlinear contraction semigroups, J. Functional Analysis 13 (1973), 97-106.
- 9. J. K. Hale, Dynamical systems and stability, J. Math. Anal. Appl. 26 (1969), 39-59.
- E. N. RUDENKO, Properties of solutions of mixed problems of quasilinear parabolic equations, Differentcial'nye Uravnenija 7 (1971), 115-120.
- 11. T. I. ZELENYAK, The stability of solutions of mixed problems for a particular quasi-linear equation, *Differentcial'nye Uravnenija* 3 (1967), 19-29.
- T. I. ZELENYAK, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable, *Differential'nye Urav*nenija 4 (1968), 34-45.